Name:,	·
(Last name)	(First name)
Student ID#:	
Registered Section:	
Instructor: <u>Lew Lowther</u>	

Solutions

York University

Faculty of Pure and Applied Science Department of Computer Science

EECS 1520.03 COMPUTER USE: Fundamentals Test 1 – Version B

Instructions:

- This is an in class examination, therefore examination rules are in effect.
- Fill in the box at the top of this page, and print your ID# at the top of each odd numbered page.
- Answer ALL questions.
- Time allowed is **50** minutes.
- Use of all electronic devices is **PROHIBIED**.
- There are **5** pages of questions in addition to the cover. Please count them.

<u>Part</u>	<u>Value</u>	<u>Mark</u>
A B C D E F G	5 7 2 5 5 1 15 10	
Total:	<i>50</i>	

D	#				
. レ	π	•			

Part A [5 points]

For each of these concepts, write the generation in which it was first used into the blank, and circle the history (**hardware** or **software**) to which it belongs.

COBOL	2	hardware / software
large scale integration	4	hardware / software
magnetic tape drives	1	hardware / software
systems programmers	1	hardware / software
vacuum tubes	1	hardware / software

Part B [7 points]

A pattern of binary digits can be interpreted in several different ways. Show how the pattern **01001010** translates using each of the following interpretations.

unsigned integer	74
integer in 2's complement notation	+74
integer in excess notation	-54
Hexadecimal short form	4A
Octal short form	112
floating point notation	+5%
ASCII	J

Part C [2 points]

- 1. In EECS1520, how many of a student's test grades can be annulled?
 - a) None
 - b) Only Test 2
 - c) Only Test 1
 - d) 0, 1, or 2
- 2. At what point in the course can a student in EECS1520 annul a test grade?
 - a) Before the test
 - b) Immediately after the test
 - c) At the end of the term
 - d) Never

Version B 2 Of 6

Pa	art D [5 points]
1)	In general, the process of converting analog data to digital data is called a) digitizing b) reset c) encoding d) sampling e) reclocking
2)	The process of correcting degradation to digital data is called a) digitizing b) reset c) encoding d) sampling e) reclocking
3)	stores the differences between consecutive frames of a video a) Huffman encoding b) Keyword encoding c) Run length encoding d) Spatial compression e) Temporal compression
4)	A continuous representation, corresponding to the actual information it represents a) analog data b) digital data
5)	Some information may be lost in the process of compression. a) lossless b) lossy

Part E [5 points]

This partial worksheet generates random Moves for playing Rock/Paper/Scissors.

RandomNum	0	2	2	0	1
Move	Rock	Scissors	Scissors	Rock	Paper

- 1. **RandomNum** is a randomly generated integer: 0, 1, or 2. Write a single Excel formula to create the values of **RandomNum**. [3] =INT(RAND()*3)
- 2. An Excel worksheet that contains data values that remain constant throughout the spreadsheet model would usually be called:
 - a) Comments
 - b) Parameters
 - c) Graph
 - d) Summary
 - e) Main Data
- 3. In Excel, a cell in a spreadsheet can contain:
 - a) a formula
 - b) a literal value
 - c) a literal string
 - d) any of the above
 - e) none of these

Part F [1 point] - Join the Dots

The dots below are labelled (on the left) in 2's Complement notation. Connect the dots that have **positive** numbers as labels. Start with the smallest value and proceed to the largest.

Version B 4 Of 6

Part G [15 points]

1. In 5-bit, Excess notation, how many of the patterns represent negative numbers?[1] 16

2. Perform the following calculation in Binary:[1]

```
0010.1001
```

+ 0001.0011

0011.1100

- 3. Express the answer above as a proper fraction in decimal.[1] 3¾
- 4. Show how to encode this value in 8-bit binary Floating Point notation.[1] 01101111
- 5. Show how a computer would use 8 bit binary notation to compute the following. [5] 57 / 25

25 converts to	00011001	
So -25 is	11100111	1
57 converts to	00111001	1
Add 57 and -25	1 00100000	1
The remainder is larger than the divisor so add -25 again	11100111	
	10 00000111	2

6. Perform the following calculation in Binary using the optimized method.[6] 27*34

```
 = 27 * (32 + 2) 
 = 27 * 2^{5} + 27 * 2^{1} 
 = 27 converts to 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (32 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 + 2) 
 = 27 * (23 +
```

ID#	
$_{f 1}m U\pi$	

Part H [10 points] - Short!! Answer

1) If the "*" is the flag character in run-length encoding, how would the following string be compressed?

AAAAABBBCDDDDDEEEEE

*A6BBBC*D5*E5

- 2) What is the compression ratio achieved by this process? 13/20 or .65 or 65%
- 3) Using the same style for run-length encoding, unpack the following:

NNNNNNXMMMM2222SSS

4) Use the following Huffman alphabet to encode the string. $a = 00 \quad m = 1111 \quad s = 110 \quad b = 1110 \quad o = 01 \quad t = 10$ "tomato"

10011111001001

5) Using the same Huffman alphabet, decode the following:

"1110010010110"

boats

- 6) What compression ratio was achieved by this encryption? Original size: 5 characters @ 8 bits each = 40 bits 13/40 or .325 or 32.5%
- 7) What is the term that refers to the amount of data that is used to represent a colour? colour depth
- 8) What basic colours are used by computer monitors to produce coloured images? red, green, blue
- 9) _____ describes an image in terms of lines and geometric shapes vector graphics
- 10) If an image's size is 150 X 200 pixels, and is stored in TrueColor format, how many bytes of memory are needed to store the image without compression?
 150 * 200 = 30,000 pixels * 3 bytes/pixel = 90,000 bytes

Version B 6 Of 6